Real Time Visualization of Structural Response through Wireless Communication using MEMS Sensors

Presented by Tomoyuki Enomoto
Hung-Chi Chung, Tomoyuki Enomoto, Kenneth Loh*,
Supervised by Masanobu Shinozuka
Civil and Environmental Engineering
University of California, Irvine CA
*REU student (from Johns Hopkins University)
Contents

✓ Background
✓ Objective
✓ Proposed Methodology
✓ Preliminary Study
 ✿ Analog Devices MEMS Acc ADXL202E
 ✿ Silicon Designs MEMS Acc SD2210
✓ Real Time Visualization of Response
 of Steel Bridge
✓ Bridge Response under Jumping Load Simulation
 with SAP 2000
✓ Summary
✓ Future Plan
✓ References and Acknowledgment
Background ~ Structural Monitoring

- Cable-based data acquisition systems present some difficulties for structural health monitoring
- Cabling and electromagnetic interference
- Early damage detection (even invisible)
- Effective, economical and long-term structural inspection and maintenance
Rapid advances of **MEMS** technologies such as mechanical elements, sensors, actuators, and electronics on a common silicon substrate through micro fabrication technology.

Advantages of MEMSAccelerometer

- Small
- Low-cost
- Low Power Consumption

MEMSnet
http://www.memsnet.org/

Analog Devices
http://www.analog.com/
Objective

Development of a reliable and robust devices with MEMS accelerometer and wireless transmitter for the structure monitoring in a field environments
Preliminary Study

✓ Experimental Setup

✓ ADXL202E Unit
✓ Shaker Test

✓ Silicon Designs (SD) 2210-002 Unit
✓ SD Unit Technical Flow
✓ Shaker Test
✓ Impact Experiment

http://www.silicondesigns.com/
Experimental Set Up
ADXL202E

- Most Popular MEMS Accelerometer
- Low Cost & Low Power Consumption
- 2 Axis; ±2g

ADXL202E MEMS Accelerometer

- Battery Room: 4"
- Main Board of Sensor: 2-1/2"
- Micro Controller
- RS232 Port

Transmitter & Receiver Unit
Shaker Test of ADXL202E Sensor Unit

- Noise level is too high for bridge health monitoring
- RMS = 3.0mg

Shaker test at 2Hz 10mg

Linearity Curve
Silicon Designs SD-2210-002

- Low Cost & Low Power Consumption
- 1Axis; ±2g
- Bigger Mass than ADXL 202E
- Wide Range of Output Voltage; ±4V against ±2g

http://www.silicondesigns.com/
Silicon Designs Sensor & Receiver Unit

Sensor Unit

Receiver Unit

2 ½“

4 ½“

Antenna

9V

Micro Controller

FM Receiver

Serial Port

Receiver

Sensor Unit

Receiver Unit

9V Battery

Micro Controller

Serial Port
Sensor Unit & Receiver Unit Data Flow

Sensor

- 9V Battery
- Micro Controller
- FM Transmitter
- 5V Regulator
- SD Sensor

Receiver

- 9V Battery
- FM Receiver
- Micro Controller
- 5V Regulator

Flowchart Details

- **SD 2 Voltage AON,AOP**
- **Calculation the difference between AON and AOP**
- **Decide the Pulse Width**
- **PWM Output**
- **FM Transmitter**
- **Antenna**

Antenna

- **FM Receiver**
- **Input Capture Interrupt**
- **Count the Pulse Width**
- **Serial Output**
- **RS232C**

Serial Port

- **Tx**
- **Rx**

Laptop Computer
Real-time Data Acquisition System

Hardware
- 1 Axis; ±2g
- Transmit Range up to 400 ft
- Powered by 9V Battery
- Connected by RS232C Cable

Software
- Read the Serial Port
- Real-time Visualization
- 200Hz Sampling
- Data Logger system

Real-time Visualization Software
Noise Level of SD Sensor Unit

- Reduce 50% noise comparing with ADXL202E Unit
- RMS = 1.5mg

Shaker test at 2Hz 10mg Linearity Curve
Steel Truss Bridge at UCI
Experimental Setup

3 type Accelerometers
- **✓** Seismic Piezoelectric Accelerometer PCB 393C
- **✓** Silicon Design Wireless Sensor Unit
- **✓** ADXL202E Sensor Unit and Transmitter Powered by UPS

- **✓** Data Acquisition at 10 m Away from Sensors
- **✓** Impact Test at the Center of Bridge

Data Acquisition at 10 m Away from Sensors
Experimental Results Time Domain

Seismic Piezoelectric Accelerometer PCB 393C

<table>
<thead>
<tr>
<th>Measurement Range</th>
<th>2.5g pk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>0.1mg</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>60Hz</td>
</tr>
</tbody>
</table>

Silicon Design

<table>
<thead>
<tr>
<th>Measurement Range</th>
<th>+2g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>1.5mg</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>200Hz</td>
</tr>
</tbody>
</table>

ADXL 202E

<table>
<thead>
<tr>
<th>Measurement Range</th>
<th>+2g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>3mg</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>50Hz</td>
</tr>
</tbody>
</table>
Experimental Results Frequency Domain

Seismic Piezoelectric Accelerometer PCB 393C

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.12</td>
</tr>
<tr>
<td>2</td>
<td>6.00</td>
</tr>
<tr>
<td>3</td>
<td>13.63</td>
</tr>
</tbody>
</table>

Silicon Design

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.08</td>
</tr>
<tr>
<td>2</td>
<td>6.12</td>
</tr>
<tr>
<td>3</td>
<td>13.17</td>
</tr>
</tbody>
</table>

ADXL 202E

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.20</td>
</tr>
<tr>
<td>2</td>
<td>5.96</td>
</tr>
<tr>
<td>3</td>
<td>13.57</td>
</tr>
</tbody>
</table>
Bridge Response Under Jumping Load Simulation with SAP 2000

Construction Design on Paper

SAP 2000 3D Model (to scale of actual bridge)
Modal Analysis

<table>
<thead>
<tr>
<th>Mode</th>
<th>Natural Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>5.04 Hz</td>
</tr>
<tr>
<td>Mode 2</td>
<td>6.19 Hz</td>
</tr>
<tr>
<td>Mode 3</td>
<td>10.80 Hz</td>
</tr>
<tr>
<td>Mode 4</td>
<td>11.01 Hz</td>
</tr>
<tr>
<td>Mode 5</td>
<td>13.13 Hz</td>
</tr>
</tbody>
</table>

- Mode 1: Vertical Mode
- Mode 2: Lateral Mode
- Mode 3: Vertical Mode
- Mode 4: Local Mode
- Mode 5: Torsional Mode
Time History Analysis

- **Loading**

 Impact load simulated by rectangular function

Time vs **Acceleration (mg)**

- Time (s) range: 0 to 8
- Acceleration range: -80 to 80

Load (kg) vs **Time (s)**

- Load range: 0 to 120
- Time range: 0 to 4500

Power Spectral

- Damping Ratio = 0.01
- Damping Ratio = 0.02
Summary

- ADXL202E is popular, low cost, and low power consumption. It is good for detection of larger acceleration such as severe earthquakes.

- Silicon Design SD-2210-002 shows better performance than ADXL202E in noise level. SD-2210 can measure much smaller acceleration. It provides a good sensor option for bridge health monitoring.

- SD-2210 is integrated with wireless transceiver module in a sensor system. **Real-time visualization on laptop computer** is demonstrated for the first time in the field test.

- In the field test, cable based traditional accelerometer is also used. Comparison show the reliability of wireless device and data acquisition system for bridge health monitoring.

- Results of structural analysis by SAP 2000 show the validity of the experimental results.
Future Plan

Near Future Plan

Apply developed sensor units to Caltrans’ highway bridges for ambient vibration experiment

Power consumption is a problem to be solved. By using a 9V battery in a sensor unit, the battery power can run out in 5 hours.

Long-term Future Plan

Apply Bluetooth module for Multiple wireless communication

Solar Power for the power consumption problem
Caltrans’ freeway bridges

West St. On-Ramp
Jamboree Rd. Overcrossing
UCI

Jamboree Rd. Overcrossing

West St. On-Ramp
References

2. High Performance Wireless Research and Education Network (HPWREN), http://hpwren.uscd.edu

Acknowledgment

This research is supported by the National Science Foundation (NSF) and Federal Highway Administration (FHWA) through the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and also by California State Department of Transportation (CalTrans).